Municipal fleets and plug-in vehicles in Indianapolis

Will St.Clair
Vice President Vision Fleet

Manuel Mendez
Project Manager Indianapolis Office of Audit and Performance

June 17, 2015
Introductions

Manuel Mendez
Project Manager

Indianapolis Office of Audit and Performance

Operational lead for Indianapolis Freedom Fleet project

Manages day to day operations of Freedom Fleet

Will St. Clair
Vice President

Vision Fleet

Works at Vision Fleet – Indy’s partner for the Freedom Fleet

Partners with public fleets considering EV/AFVs
Agenda

• Introduction to Indianapolis’s “Freedom Fleet”

• Case for change: Electric vehicle economics

• Barriers to EV adoption and Indy’s solutions

• So what? What does this mean for me?
By 2025, Indy will have a 100% post-oil fleet of non-pursuit vehicles.

Mayor Greg Ballard signed Executive Order #6 in December 2012, making Indianapolis the first major city in the US to pledge to convert its entire municipal non-police fleet to alternative fueled vehicles by 2025.
Looking back: Indianapolis’ starting point

- Fleet operations fragmented across departments
- Limited and unreliable data on operations and costs
- Old, fuel inefficient vehicles
- Average of 16.6 MPG
- Costly to maintain vehicles
- Minimal experience with EVs
- 5 under-utilized THINK EVs in fleet prior to launching post-oil effort
- Overall, budget cutbacks had left fleet in a tough spot
Fast forward to 2015: Indianapolis’ results

Largest ever public fleet EV project in US

425 EVs planned across city departments

113 EVs deployed as of March 2015

18,000 gallons of gas avoided to-date
100+ of planned 425 EVs already deployed in Indianapolis departments – remainder will be deployed by early 2016

Number of Freedom Fleet vehicles

- Leaf
- Fusion
- Volt

<table>
<thead>
<tr>
<th>Wave</th>
<th>Leaf</th>
<th>Fusion</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>113</td>
<td>37</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>58</td>
<td>305</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Leaf</th>
<th>Fusion</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 2014</td>
<td>14</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Oct 2014</td>
<td>2</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>Dec 2014</td>
<td>2</td>
<td>5</td>
<td>93</td>
</tr>
<tr>
<td>Jan 2015</td>
<td>8</td>
<td>8</td>
<td>106</td>
</tr>
<tr>
<td>Feb 2015</td>
<td>8</td>
<td>8</td>
<td>165</td>
</tr>
<tr>
<td>Mar 2015</td>
<td>37</td>
<td>33</td>
<td>245</td>
</tr>
<tr>
<td>Wave 4</td>
<td>58</td>
<td>58</td>
<td>305</td>
</tr>
<tr>
<td>Wave 5</td>
<td>62</td>
<td>58</td>
<td>305</td>
</tr>
<tr>
<td>Wave 6</td>
<td>305</td>
<td>305</td>
<td>305</td>
</tr>
</tbody>
</table>
Vehicles have traveled 400k miles as of March 2015, 47% of those on electricity and offset 18k gallons of gas as a result.

Cumulative vehicle miles traveled: electric and gas (thousands)

Cumulative gallons of gasoline offset (thousands)
Why is tracking and monitoring so critical for PHEVs?
Agenda

• Introduction to Indianapolis’s “Freedom Fleet”

• Case for change: Electric vehicle economics

• Barriers to EV adoption and Indy’s solutions

• So what? What does this mean for me?
When does it make sense to deploy EVs economically? When fuel savings sufficient to offset higher initial purchase price

Key elements driving a fleet vehicle’s total cost of ownership (TCO)

- Fuel
- Infrastructure
- Maintenance
- Telematics
- Financing
- Depreciation

TCO comparison of gas vs. electric (high VMT)

- Higher purchase price
- Lower fuel cost
EVs can economically replace high mileage vehicles 1-for-1 and low mileage vehicles if combined with right-sizing.

TCO per mile of annual VMT for a representative municipal fleet

1. **Low VMT vehicles (<6k annual VMT)**: These vehicles can be right-sized through pooled use to fewer, higher utilized EVs at a lower cost per-mile.

2. **Mid VMT vehicles (6-10k annual VMT)**: These vehicles are generally left as-is; EV fuel savings are not high enough to cover the additional capital cost.

3. **High VMT vehicles (>10k annual VMT)**: These vehicles often can be replaced 1-for-1 with EVs: fuel savings sufficient to cover additional capital cost.
Agenda

• Introduction to Indianapolis’s “Freedom Fleet”

• Case for change: Electric vehicle economics

• Barriers to EV adoption and Indy’s solutions

• So what? What does this mean for me?
Context setting: Fleets should be an ideal fit for electric vehicles

- Total cost of ownership mindset
- Route predictability
- High vehicle utilization
- Central parking facilities
- Low electricity rates
Why aren’t more fleets doing this? Numerous constraints – in financing, deploying and operating EVs – hold back adoption.

- Uncertain operational savings
- Higher upfront costs / Lack of financing
- Tax credit availability
- Deployment complexity / Infrastructure
- Suboptimal driver behaviors
- Lack of bandwidth for new projects
- Low confidence in service levels
- Limited EV experience

For further discussion
Indianapolis’ solutions (I): Deployment complexity/Infrastructure

Obstacle(s)

- Deployment complexity / Infrastructure

Solutions in Indy

- Strategic site selection
- Systems-level optimization
- Use of existing charging infrastructure
- At-home charging at level I
- Few behind-the-meter upgrades
Indianapolis charging: Level I at-home charging used extensively
Indianapolis’ solutions (II): Higher upfront capital cost; Tax credits

Obstacle(s)

Higher upfront costs / Lack of financing

Tax credit availability

Solutions in Indy

Private project partner

Tax credit pass-through

Lease / Rental agreement model

Low upfront payments

Right-sizing of underutilized vehicles

Right-typing to match vehicle with use case
How to address these obstacles? Look to other markets that faced similar challenges

Residential solar PV capacity installed in CSI Program
(nameplate capacity – megawatts)

By bundling costs of owning and operating a solar system, assuming operational responsibility and promising a lower rate, key obstacles were eliminated

Source: California Solar Initiative data; Dates based on first CSI filing for each project
Indianapolis' solutions (III): Uncertain operational savings

Obstacle(s):

Uncertain operational savings

Solutions in Indy:

- Rigorous total cost of ownership baseline
- EV costs (cars, fuel, mtce) below baseline
- 3rd party guarantees vehicle performance
- Shared savings for higher efficiency
- Detailed tracking through telematics
Indianapolis’ solutions (IV): Suboptimal driver behaviors

Obstacle(s)

Suboptimal driver behaviors

Solutions in Indy

- Up-front one-on-one training for drivers
- Detailed monitoring through telematics
- Real-time access to data by fleet managers
- Regular ‘score-cards’ of driver efficiency
- Incentive for higher efficiency (giftcards)
- Consistent communication(s) & education
Detailed monitoring through telematics
Indianapolis’ solutions (V): Low confidence in service levels

Obstacle(s)

- Low confidence in service levels

Solutions in Indy

- Pilot efforts up front to validate plans
- Driver focus groups and engagement
- Careful selection of use cases
- Up-fits as appropriate (e.g. gun safe)
- EV champions in each department
- Responsive and flexible in resolving issues
Agenda

• Introduction to Indianapolis’s “Freedom Fleet”

• Case for change: Electric vehicle economics

• Barriers to EV adoption and Indy’s solutions

• So what? What does this mean for me?
Summarizing it all: Learnings from Indianapolis

- New technology requires a new approach
- Difficult to achieve bold goals acting alone – find capable partners
- Comprehensive strategy needed – can’t just hope for success
- Data and monitoring is critical to delivering expected value
- Technology is proven – good, battle-tested EV options available
- Potential financial benefits are substantial when done right